

Material

Gasket sheet **GAMBIT AF-400** is based on Kevlar[®] aramide fibres, mineral fibres, and fillers bound with NBR rubber-based binder.

AF - 400

KEVLA

Designation according to DIN 28091-2: **FA-AM1-0** Kevlar[®] is a registered trademark of E. I. du Pont de Nemours and Company or its affiliates.

General properties and applications

High parameter sheet, made of top quality materials. Highly reliable, with broad range of applications. Designated for use in supervised joints, and installations for transmission of natural gas. Resistant to water, steam, kerosene, fuel, oil, and solutions of salts, among others.

Admissions / Certificates

INIG

Maximum working conditions

Peak tem	perature	°C	400
Temperat operation	ure under continuous	°C	350
	ure under continuous with steam	°C	260
Pressure		МРа	12

Dimensions

1	Standard thicknesses of sheets /thicknesses above 5.0 mm are produced by gluing/	mm	0,3; 0,5; 0,8 1,0; 1,5; 2,0; 2,5 3,0; 4,0; 5,0; 6,0	± 0,1 ± 10% ± 10%
l	Standard dimensions of sheets /custom dimensions available within the total range of 1500x3000 mm/	mm	1500x1500	± 10,0

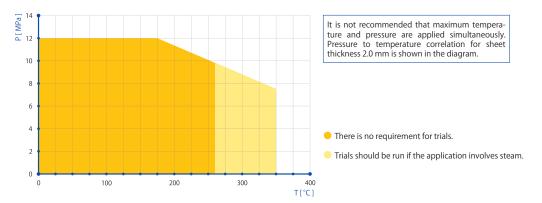
Non-standard thicknesses, graphiting of sheet surfaces, and reinforcement with metallic mesh available upon request.

All information in this catalogue is based on years of experience in manufacture and use of the discussed products. Since sealing performance in the joint is subject to multiple factors such as mounting method, system parameters, and sealed medium, technical parameters specified herein are of informative nature only and cannot be used as grounds for any claims; any special uses of products are subject to consulting with the manufacturer.

GASKET SHEETS

Physical and chemical properties

KEVLA


Density	± 5%	g/cm³	2,0	DIN 28090-2
Transverse tensile strength	min.	MPa	12	DIN 52910
Compressibility	typical value	%	10	ASTM F36
Elastic recovery	min.	%	55	ASTM F36
Residual stresses 50 MPa/16 h/300 °C/	min.	MPa	30	DIN 52913
Residual stresses 50 MPa/16 h/175 °C/	min.	MPa	35	DIN 52913
INCREASE IN THICKNESS				
Oil IRM 903 150 °C/5 h	max.	%	6	ASTM F146
Model fuel B 20 °C/5 h	max.	%	6	ASTM F146
Kerosene 20 °C/24 h	max.	%	5	ASTM F146
Colour		blue		

(Values as detailed in table refer to 2.0 mm thick gasket sheets)

Calculation coefficients

Coefficients DT – UC – 90/WO-0/19								
$\sigma_{_{ m m}}$			σ_{r}			b		
1 mm	2 mm	3 mm	1 mm	2 mm	3 mm	20 °C	200 °C	300 °C
40 MPa	21 MPa	12 MPa	6,4 p ₀	5 p ₀	4,1 p ₀	1,1	1,8	3,0

	Coefficients ASME						
L	Tightness class	Thickness	m	у			
L	L0,1	2 mm	5,5	2,5 MPa			
Ų	L1,0	2 mm	2,4	1,0 MPa			

All information in this catalogue is based on years of experience in manufacture and use of the discussed products. Since sealing performance in the joint is subject to multiple factors such as mounting method, system parameters, and sealed medium, technical parameters specified herein are of informative nature only and cannot be used as grounds for any claims; any special uses of products are subject to consulting with the manufacturer.